Osteology everywhere: Muffin tops

It’s become challengingly chilly here in Astana and my days of running outdoors are fading into memories redshifting into oblivion, so last weekend I went ice skating instead. Pulling off certifiably Scott Hamiltonian moves, I espy my silhouette and what hominid face is staring back?

That’s, right, Australopithecus boisei (right). Of course they’re not identical, but then they don’t really have to be when you see Osteology Everywhere.

But then again, when you’ve been doing this too long, you start to see Paleontology Everywhere, too. The shadow also reminded me of a time a few years ago, when we were picking through bags of backdirt at Dmanisi, foraging for micromammals, passing pachmelia and time with trivia. Someone posed the riddle, “What did one muffin say to the other muffin?” To which I responded:


Historical contingency and an herbivorous calamity

This post was chosen as an Editor's Selection for ResearchBlogging.org

A while ago I asked, “What the hell was Australopithecus boisei doing?” To recap: there’s this weird side branch of human evolution that was dubbed “Australopithecus boisei” and lived in Eastern Africa from around 2.3 – 1.4 million years ago. They lived right alongside our ancestors, early Homo. If you think human diversity is remarkable today, you’d be totally blown away by the diversity of the early Pleistocene. Since 1959 when A. boisei (then Zinjanthropus boisei) was first discovered, people noticed its massive molar and premolar teeth, thick and powerful jaws, and muscle markings indicative of diabolical chewing power. ‘Probably subsisted on a diet of low-quality, hard to chew foods,’ people reasoned.

But a few years ago, this picture changed: evidence from toothwear and the chemical composition of teeth suggested A. boisei was actually eating grass or sedges (see the referred post or a nice recent review by Julia Lee-Thorp for more info). Such a diet is totally at odds with what people had hypothesized based on the size of the chewing muscles and teeth.

Colobus molars, good for shearing apart leaves. (image: http://bit.ly/xefm6t)

I was discussing this last point with a colleague the other day, who could not believe A. boisei ate grasses or the like: Many animals known to eat grass or leaves tend have molars with high crowns with slicing edges for shearing apart a mouthful of vegetation (above), but A. boisei molars are large and low-cusped, becoming fairly flat with wear (below).

Australopithecus boisei specimen KNM-ER 15930 (Leakey & Walker 1988, Figure 8)
But, it occurred to me, maybe high-crowned, shearing molars simply were not an ‘option’ in the evolution of Australopithecus boisei. Natural selection is a powerful force of evolution, but it is limited because it can work only with existing variation: it does the best it can with what it’s got. The earliest surefire hominins, Australopithecus anamensis and afarensis, certainly did not have ‘cresty’ molars with pointy cusps, and neither did many late Miocene apes, for that matter. Rather, the ancestors of A. boisei had fairly low bulbous molar cusps, and that’s some serious evolutionary baggage for a hominid hoping to corner the grass and sedge market.
So we can draw up the following hypothesis for the evolution of A. boisei: as the early members of the species moved into a niche of eating grass/sedges, rather than evolve cresty teeth, they increased the size and enamel thickness of their ancestors’ molars to better-withstand their diet. Perhaps this was the ‘easiest’ solution to adapting teeth to a crappy diet (maybe some developmental constraint?). Or perhaps there’s another, yet unidentified food responsible for the species’ curiously high-C4 diet … who knows? Nota bene: this isn’t necessarily what I think happened, it’s just a hypothesis consistent with current evidence about A. boisei‘s anatomy and diet.
If Life on Earth has taught us anything, it’s that there are many ways to do the same thing. What’s more, evolution is highly constrained by pre-existing biology and historical circumstance. Australopithecus boisei may have been ‘a victim of its times,’ forced into an herbivorous niche for which it was ill-equipped.
Leakey RE, & Walker A (1988). New Australopithecus boisei specimens from east and west Lake Turkana, Kenya. American Journal of Physical Anthropology, 76 (1), 1-24 PMID: 3136654
Lee-Thorp, J. (2011). The demise of “Nutcracker Man” Proceedings of the National Academy of Sciences, 108 (23), 9319-9320 DOI: 10.1073/pnas.1105808108
*Edited 07 Nov 2015

Culinary trends in an extinct hominid

A few weeks ago I discussed a recent paper that analyzed the carbon and oxygen isotope ratios from Australopithecus boisei molars (Cerling et al. 2011). The major finding here was that an enlarged sample (n=24 more) corroborated earlier isotopic (van der Merwe et al. 2008) and tooth wear evidence (Ungar et al. 2008) that A. boisei probably did not subsist on as much hard foods as previously thought. Although this strange hominid probably ate mostly grass/aquatic tubers, some researchers think it may have looked something like this:
Left, A. boisei reconstructed skull, from McCollum (1999, Fig. 1). Right, artist’s reconstruction of what the individual on the left may have looked like during life.
But looking at the numbers I’m wondering if the carbon isotopes reveal anything more about this curious hominid. If we plot boisei‘s carbon 13 values against the fossils’ estimated ages, there’s a small hint of a temporal trend, of increasing carbon 13 levels over time (more C4 plant consumption). Fitting a line to these data does indicate an increasing C4 component over time, but the slope of the line is not significantly different from zero. The early, high value could be an outlier (not eating the same stuff as his/her peers?), although the lowest carbon 13 value of all that would support this trend is also much lower than the other values; it could be a more anomalous one. So while it’s tempting to hypothesize dietary change over time in A. boisei, at the moment it looks like you can’t reject the hypothesis that diet is consistent throughout the Pleistocene until the A. boisei’s demise.  Supporting dietary stasis, Ungar and colleagues (2008) reported similar molar tooth wear in specimens from 2.27-1.4 million years ago.
In addition, Cerling and colleagues sampled at least one of each of the cheek teeth. Because teeth form in the jaws in a sequence (not all at the exact same time), the isotopic signatures from given teeth represent the dietary intake of carbon at various different points in an individual’s childhood. In the figure below I lumped upper and lower teeth together; the un-numbered “M” indicates molars unassigned to a specific position.

The first molar crown starts to form right around birth, and note here that it’s carbon 13 values are slightly higher than the other molars. The premolars and second molar start to form around the same time, so it is curious that each of these teeth show distinctly different ranges of carbon 13 levels. The sole P3 is also the lowest value (eating fewer C4 plants) in the entire sample, but the P4 has less negative values (eating more C4 plants). Not sure what’s going on here, but maybe later analyses of more specimens will clarify the situation.

Our australopithecine ancestors and cousins have proven to be a rag-tag bunch of funny bipeds, and A. boisei has proven to be one of the weirder ones, in my opinion. Of course descriptions of Ardipithecus ramidus and Australopithecus sediba skeletons have been recent reminders that we have lots left to learn about Pleistocene hominids. For my part, I’m interested in working out the deal with the group of “robust” Australopithecus.
Cerling, T., Mbua, E., Kirera, F., Manthi, F., Grine, F., Leakey, M., Sponheimer, M., & Uno, K. (2011). Diet of Paranthropus boisei in the early Pleistocene of East Africa Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1104627108
McCollum, M. (1999). The Robust Australopithecine Face: A Morphogenetic Perspective Science, 284 (5412), 301-305 DOI: 10.1126/science.284.5412.301
Ungar PS, Grine FE, & Teaford MF (2008). Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. PloS one, 3 (4) PMID: 18446200
van der Merwe NJ, Masao FT and Bamford MK. 2008. Isotopic evidence for contrasting diets of early hominins Homo habilis and Australopithecus boisei of Tanzania. South African Journal of Science 104: 153-155