Hey, “all you lovers out there,” which is how Marvin Berry introduced “Earth Angel” at the Enchantment Under the Sea dance back in good-olde 1955. And by “lovers” I mean “geneticists.”
Poring over the recent Neandertal nuclear genome paper (Green et al. 2010) for seminars, we’re struck by two contradictory ideas. On the one hand, the authors demonstrate pretty convincingly that Neandertals and the more ‘anatomically modern’ humans of Europe and Asia interbred. This doesn’t come from genetic comparisons of Neandertal and contemporaneous human fossils, but of Neandertals with living humans traipsing modern soil. But on the other hand, the authors estimate the time of the divergence of Neandertal and living human populations.
Herein lies the rub:
“Population divergence [is] defined as the point in time when two populations last exchanged genes.” (Green et al. 2010: 717)
Which they estimate, based on genome sequence divergence and some other assumptions, to be anywhere from ~270,000 – 440,000 years ago. But then this:
“[The Out-of-Africa] model for modern human origins suggests that all present-day humans trace all their ancestry back to a small African population that expanded and replaced [Neandertals] without admixture. Our analysis of the Neandertal genome may not be compatible with this view because Neanertals are on average closer to individuals in Eurasia…” (Green et al. 2010: 721)
Though they say “may not” they probably should’ve just said “isn’t.” Either way, they estimate an ancient date at which the groups in question “last exchanged genes,” but also demonstrate that these populations last exchanged genes much more recently.

So what is “population divergence,” then? As a wise man asked, “what does divergence mean when there is reticulation?” (I’m assuming he would prefer to go nameless) Reticulation referring not to pythons or chipmunks, but to mating between individuals in different populations. Is “divergence” not so much the last time genes were exchanged, but rather the time when the genomes began to become different?
Now that I bring it up, wouldn’t it also be neat to see a fight between the reticulated python and northern reticulated chipmunk?
Reference
Green, R., Krause, J., Briggs, A., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M., Hansen, N., Durand, E., Malaspinas, A., Jensen, J., Marques-Bonet, T., Alkan, C., Prufer, K., Meyer, M., Burbano, H., Good, J., Schultz, R., Aximu-Petri, A., Butthof, A., Hober, B., Hoffner, B., Siegemund, M., Weihmann, A., Nusbaum, C., Lander, E., Russ, C., Novod, N., Affourtit, J., Egholm, M., Verna, C., Rudan, P., Brajkovic, D., Kucan, Z., Gusic, I., Doronichev, V., Golovanova, L., Lalueza-Fox, C., de la Rasilla, M., Fortea, J., Rosas, A., Schmitz, R., Johnson, P., Eichler, E., Falush, D., Birney, E., Mullikin, J., Slatkin, M., Nielsen, R., Kelso, J., Lachmann, M., Reich, D., & Paabo, S. (2010). A Draft Sequence of the Neandertal Genome Science, 328 (5979), 710-722 DOI: 10.1126/science.1188021