Data, development and diets

As mentioned briefly but repeatedly on this blog, my dissertation is about growth of the lower jaw in Australopithecus robustus (right), comparing it with jaw growth in recent humans. This is important because we don’t really know exactly how skeletal-dental (especially skeletal) maturation of our fossil relatives compares with us today. From a developmental perspective, it is also important to know how and when adult form arises during growth, and how these processes vary within and between species.

It’s not easy to examine ontogeny in fossil samples. In a post a few weeks ago I included a drawing of some of the A. robustus juvenile jaws. At the time, I was pointing out variation in dental maturity (which is a nice thing when studying growth), but the picture also reveals a bigger bugbear – variable preservation of features (which is a terrible thing if you’re trying to study growth).

For example, the youngest individual in the fossil sample (right, viewed from above, front is at the top of the picture) includes only the second baby molar tooth, a bit of the bone surrounding the sides and back of the tooth, and a small portion of the ascending ramus. The oldest subadult in the sample (SKW 5), on the other hand, is almost entirely complete. In between these ages, jaws variously preserve different parts. Under these circumstances (i.e. lots of missing data), growth cannot be studied by traditional (namely, multivariate) methods (how I will deal with this is a topic for another day).

So while studying the fossils in South Africa, in order to maximize the number of comparisons I could possibly make, I measured just about every single linear dimension conceivable on these jaws. I thus have a spreadsheet with 300 columns of measurements I could take on each specimen. Most of the cells are empty : (

What’s a boy to do?! In order to compare A. robustus with humans, I need to take the same measurements on a growth series of human jaws, too. But life is short, and if I want to finish this project before I succumb to some sinister signature of senescence, I really can’t take hundreds of measurements on a human sample which is much larger than the fossils. Plus, a lot of the individual measurements are a bit redundant: some of the distances overlap, many of the variables can be taken on the right and the left sides, etc.

If I am to finish collecting data in a reasonable time frame, I need to cull my variables from 300 to however many (a) maximizes the comparisons I can make within the less-complete A. robustus sample, and (b) are not too repetitive. Boo. Plus I have to get these spreadsheets ready to be read and analyzed in the program R, which for whatever reason is always a pain in the ass.

Again, the statistics of the overall comparisons is a topic for another day, and I haven’t had the opportunity yet to write the analytical program(s). But I have looked at some individual traits in A. robustus compared with a subsample of humans. For example, at the left is a plot of changes in height of the jaw at the baby second molar or adult second premolar (which replaces the baby molar). Obviously my human sample is way to small at the moment to make any really meaningful statements about how growth compares between the two species. Note also that these are absolute measures and not size-corrected, and that these are stages of dental eruption rather than chronological ages. But from this preliminary view, the two species are very similar up to around when the first adult molar comes in (“stage 4” here). Thereafter, the A. robustus individuals dramatically increase in size rather fast, whereas humans only slowly increase in size.

Again, this is a very preliminary result, and only for a single measurement. But it is interesting in light of a recent study by Megan Holmes and Christopher Ruff (2011). These researchers compared jaw growth recent humans who differed in the consistency of their diets. They found that kids in the two populations were not too different, but the samples became more different with age to become fairly different as adults. Now, A. robustus seems to have eaten a diet with lots of hard objects (see recent review by Peter Ungar and Matt Spohneimer), but humans’ diet (and technology) really obviates the need for chewing as powerful as seen in A. robustus. So this dietary divergence may well be reflected in the growth difference suggested above, but it may not be the sole factor. PLUS I NEED TO INCREASE MY HUMAN SAMPLE.

Stay tuned for more analyses and results!

ResearchBlogging.orgReferences to make you smarter and stronger
Holmes, M., & Ruff, C. (2011). Dietary effects on development of the human mandibular corpus American Journal of Physical Anthropology, 145 (4), 615-628 DOI: 10.1002/ajpa.21554

Ungar, P., & Sponheimer, M. (2011) The Diets of Early Hominins. Science 334(6053), 190-193. DOI: 10.1126/science.1207701  


Variation: a blessing and a curse

Trying to start on finishing my dissertation, I’m thinking about the issue dental development and how it relates to skeletal growth. Specifically I’m trying to decide whether I want to analyze my human and Australopithecus robustus samples based on estimates of “dental age,” or if I want to be a bit more cavalier and divide the sample into rougher age categories.

To avoid copyright issues, here’s a crappy picture I drew a few years ago, of the youngest A. robustus jaws. The youngest, “SK 438” is erupting its last baby tooth (bottom right), while the others have their full set of baby teeth, and none of them has its first adult tooth yet. I don’t think I can estimate ages accurately enough to capture the true chronological difference between SK 438 and the rest. Would I be better off just dividing the group into “younger” (SK 438) and “older” (the rest) infants, or even lumping them all together as simply “infants”?

On the one hand, I could assign individuals a chronological age based on a modern referent of known age, at similar stages of dental development. This could allow me to get more fine-scale glimpses into patterns of growth in my samples, but that’s assuming I’ve accurately estimated their ages. Individuals vary in the ages and sizes at which their teeth erupt; a person’s first molar, for example, may erupt at anywhere from 4-8 years of age. How can I estimate an individual’s age in light of such variation? And what if I’m as poor a judge of ages as Dennis Duffy?! Conceivably I could program my analysis to account for error estimation (which in itself could be educational and interesting, but is it worth the trouble?), but this would also add a further source of uncertainty. And it’s like Dwight Schrute said (Michael Scott said), “K-I-S-S: keep it simple, stupid. Great advice, hurts my feelings every time.”

On the other hand, I could divide my sample into coarse age categories – say, putting specimens who’ve attained a given level of dental development in the same group, such as ‘infant, child, juvenile, adolescent, and young adult.’ This method loses the temporal resolution of the first method, but also avoids the possible errors of assigning strict ages I’m pretty sure I would not infer accurately. But, tooth development does not show a clean 1-to-1 relationship with other systems in the body, such as hormonal axes or the bony skeleton. It’s uncertain how accurately kids can be put in any of the above categories (based on general life history variables; Bogin 1999) based on dental development.

Choices, choices.

Variation is a problem for biologists. The theory of evolution was conceived as a way to explain the conundrum of why there is such remarkable variation in the forms of life that Earth is lucky to have harbored. The problem of within-species variation in the relative timing of skeletal and dental development isn’t just a bug-bear for paleoanthropologists. It’s important to medical doctors and pathologists investigating genetically-based developmental disorders, and to epidemiologists looking at aspects of population health, such as the prevalence of growth stunting. It’s also important for forensics specialists who need to use biological clues about the age and identity of crime victims and defendants. I mean, how else would we know whether Jon Voight bit both Kramer and this pencil?

The silver lining, I suppose, on this storm-cloud of biological of variation is that without variation there cannot be evolution. And stasis is boring. If nothing changed since the Cambrian, none of us would be here today. We’d probably be some gross stupid monstrous thing, like this Hallucigenia to the right. It’s the quirks and weird variants that arise randomly, that make evolution possible. If individuals all developed exactly the same, then all organisms through all time would be the exact same, and probably all would have gone extinct as they succumbed to some sinister fate, no new variants would have arisen that may have been able to survive the devastation.
So variation is a blessing and a curse. Individual and population variation make it difficult to state norms such as what is “average” or “healthy,” and nothing to be concerned about. Variation is also the magic ingredient of adaptation, without which Life could not survive the randomness inherent in any environment.

Things I cited
Bogin, B. (1999). Evolutionary perspective on human growth Annual Review of Anthropology, 28 (1), 109-153 DOI: 10.1146/annurev.anthro.28.1.109

Also 30 Rock, The Office and Seinfeld. Well done, NBC.

eFfing Fossil Friday – Renaissance and Designer Fossils

Sorry I’m a bit late on this one, and that I’ve fallen behind on keeping the blog updated. I’ve been scrambling to make all the observations on, and collect all the data from, these Australopithecus robustus mandibles in a short time. As my advisor likes to remind me, everything always takes 3x longer than you initially anticipate, and this is certainly true of my work here. Yesterday (the actual Fossil Friday), in fact, I probably spent only 30 min with these fossils. Instead, I accompanied Lee Berger and John Hawks on a trip to Malapa – the site that recently yielded fossils of the mysterious Australopithecus sediba – and other sites in the area. To get there, I rented a car and drove on the wrong side of the road for the first time – it was a trippy trip, every time I got in the car I reached to my left for a phantom seat belt, and kept searching for the gear-shift my mind thought was in the door. Nuttiness.
Anyway, I have two thoughts for this edition of eFfing Fossil Friday. First point, related to the great tour from Dr. Berger, is that a ton of hominid fossils are lying in wait for us to re-expose them to the light of day. In South Africa, the classic Plio-Pleistocene sites have been Makapansgat (A. africanus), Sterkfontein (A. africanus) and Swartkrans (A. robustus and early Homo). These sites have variously been worked since the early 20th century. Since then, a number of other hominid-bearing sites – largely in the same area as Sterkfontein and Swartkrans – have been discovered: Gladysvale, Gondolin, Drimolen, and most recently Malapa. Yet still a metric-tonne of work is still being done on the more classic sites (except maybe Makapansgat?).
View of the valley, Malapa is somewhere in the background, I think the green patch of trees near the center, just before the big hill-shadow (?).
But these sites are just the tip of a fossiliferous iceberg. A few years ago when I was working here I accompanied some other researchers on a survey for more fossil sites in the area. What I learned then is that if you look across the Sterkfontein valley in the winter, the dessicated grassland is pimpled with the occasional patch of green trees – these small verdant isles are the tells of underlying cave systems (the caves contain water that plants will cut throats for). What was driven home yesterday at Malapa and other sites Dr. Berger showed us, is that these caves are all over the place, many fossil treasure-troves. What’s more, the A. sediba discovery (and the massive hominid molars from Gondolin) points to the idea that we are only beginning to understand what hominid life was like in the past. There is a rich prehistory still waiting to be discovered in South Africa, and undoubtedly also the rest of the African continent. Human paleontological work is far from exhausted. Let us usher in a Renaissance of field Paleoanthropology!
My next thought is that the process of fossilization can make the fossil-memories of past life quite beautiful. Now, in life the enamel of teeth is white-ish (yellow/brown is also not uncommon), and bone is this off-white/yellowish color. But during the process of fossilization, the original minerals used to make the bone (and less commonly teeth) are replaced by those in the surrounding soil. Often these minerals gussy up the fossils in neat new ways – manganese for example tends to make bone/tooth black.

Check out SK 61, an infant/child Australopithecus robustus. After fossilization, this thing takes on a designer, tortoise-shell coloration (left, above). SK 12, an older adult A. robustus (right, above), is another good example: some subterranean joker has drawn a smiley face beneath his left premolar (circled). So while we are often left with a meager fossil record, at least the fragments we get are voluptuously variegated.


I’m going to do my best to keep up with the blog during by Big Summer Adventure, and one thing I’d like to do is “F-ing Fossil Friday!” in which I focus on fossils for a bit. We’ll see if I can make this pan out.
Today I got out the rest of the Australopithecus robustus mandibles at the Transvaal Museum (above), save for I think maybe 1. As you can see from the picture, taphonomy (what happens to an animal’s remains between death and our digging them up) creates a serious challenge for the study of variation in this species. I’m focusing on ontogenetic variation – differences associated with growth and development. In spite of its fragmentary nature, so far as I know this is the best ontogenetic series of any fossil hominid (I should probably look more into A. afarensis here, too). In the bottom left you’ll see SK 438, the youngest in the sample, whose baby teeth haven’t quite come in all the way. Poor little guy! At the top right corner is SK 12, probably the oldest individual and also a big bugger.
One thing that I’ve noticed so far, only a preliminary observation that I need to actually run some numbers on, is that as individuals get older, the length of their tooth row (molars and premolars) gets shorter. This is because of the tendency for teeth to move forward during growth – “mesial drift” – and for adjacent teeth to literally wear into one another, their ends becoming flatter and flatter. While I should have realized this, it was surprising at first to find some dimensions of the lower jaw actually decreasing during growth. Now, I still have to run some tests to see if this is a biologically significant phenomenon. But it’s always nice to learn something new, even after just 2 days back with my best extinct buddies.
Stay tuned to future eFfing fossil Fridays!

Where and when the eff am I in time and space?

I landed in Johannesburg, South Africa yesterday, and after a jet-laggy day and a half or so, I’m now at the Ditsong National Museum of Natural History (nee Transvaal Museum) in Pretoria. It’s winter here in the southern hemisphere, and when I’d landed yesterday, Joburg was in the midst of the kind of mists no one misses (left, Joburg from my hotel). It was seriously super gray and cold, it was like being back in Michigan. The hotel was pretty nice. Here’s a view of sunrise this morning (which I saw since I’m still not adjusted to the time change).

I just finished my first day back with Australopithecus robustus fossils (pic below). It’s nice to be working on fossils again, but I’ve been awake since 2:30 am so as much as I love fossils it was a bit of a struggle some of the time. I’d love to say more but my eyes are about to go on strike and pop out of my head, probably to face something upsetting to punish me for not letting them rest. I’ll do my best to keep the world up to date as to my progress and travels. Good night!

Big trip 2011

It’s dawning on me now that I leave the country for the rest of the summer in just over 24 hours. First I’ll be in Pretoria for a few weeks studying Australopithecus robustus fossils at the Transvaal Museum. Then I’m off to Nairobi for a few days to check out some fossils at the Natural History Museum there. I’ve never been to Nairobi, and I’ll admit I’m a little nervous; I’ll keep you posted as to how it goes. Then right before my mum’s birthday I head to Tbilisi, Georgia for the 2nd annual Dmanisi Paleoanthropology Field School, until the end of August. Here’s a schematic of what my trip will look sorta like, starting from bottom to top.:
My whole life was up in the air for most of the first half of the year. But everything seems to have come together, so hopefully the second half of 2011 will be better than the first. That said, I don’t think I’m ready to go yet!

SK 63

Drimolen dental analysis was published yesterday in Journal of Human Evolution, and in the class I’m TAing we’re talking about A. robustus. So I’ve been thinking about A. robustus lately. Here’s a picture of SK 63 I drew this summer. It’s a juvenile, with a nice molarized deciduous first molar, tall ascending ramus with posteriorly-pointing coronoid process.