2015 AAPA conference: More brain growth

The American Association of Physical Anthropologists is holding its annual meeting next year in St. Louis, in my home state of Missouri (I’m from Kansas City, which is by far the best city in the state, if not the entirety of the Midwest). I’ll be giving a talk comparing brain size growth in captive and wild chimpanzees, on Saturday 28 March in the Primate Life History session. Here’s a sneak peak:

Velocity curve for brain size from birth to 5 years in wild (green) and caprive (blue) chimpanzees. For the captive models, the dashed line is fit to the raw brain masses, and the solid line is fit to the estimated endocranial volumes.

Velocity curves for brain size growth from birth to 5 years in wild (green) and captive (blue) chimpanzees. The wild data are endocranial volumes, but the captive specimens are represented by brain masses. So the captive data are modeled for both the original masses (dashed) and estimated volumes (solid). Wild data are from Neubauer et al. 2011, captive data from Herndon et al., 1999.

Abstract: This study compares postnatal brain size change in two important chimpanzee samples: brain masses of captive apes at the Yerkes National Primate Research Center, and endocranial volumes (ECVs) of wild-collected individuals from the Taï Forest. Importantly, age at death is known for every individual, so these cross-sectional samples allow inferences of patterns and rates of brain growth in these populations. Previous studies have revealed differences in growth and health between wild and captive animals, but such habitat effects have yet to be investigated for brain growth. It has also been hypothesized that brain mass and endocranial volume follow different growth curves. To address these issues, I compare the Yerkes brain mass data (n=70) with the Taï ECVs (n=30), modeling both size and velocity change over time with polynomial regression. Yerkes masses overlap with Taï volumes at all ages, though values for the former tend to be slightly elevated over the latter. Velocity curves indicate that growth decelerates more rapidly for mass than ECV. Both velocity curves come to encompass zero between three and four years of age, with Yerkes mass slightly preceding Taï ECV. Thus, Yerkes brain masses and Taï ECVs show a very similar pattern of size change, but there are minor differences indicating at least a small effect of differences in habitat, unit of measurement, or a combination of both. The overall similarity between datasets, however, points to the canalization of brain growth in Pan troglodytes.

Statistics: Friend or Foe?


In this week’s Science, Greg Miller describes recent uproar about a study that claims to have scientific support for the existence of extrasensory perception (ESP). Of course, ESP being in the realm of the paranormal, it ought to be somewhat outside the purview of Big Science.

But who cares about ESP?! What comes under scrutiny is statistics, the mathematical theory underlying hypothesis testing. And inference. The brief story is worth a read, as it cites statisticians on what these statistical tests actually tell us, as well as the ups and downs of Bayesian stats.
An important thing to keep in mind is that no matter how mathematical, statistics is nevertheless like everything else in science – a human endeavor. No matter how creative and insightful humans can be, there’s always a limit to our ability to decipher the world around us. I’m certainly not decrying statistics, but it’s important to keep in mind that these aren’t just handed down to us from on high. We human beings play a critical (and often subjective) hand in how we apply statistics to address our research questions.
Along these lines, just last night I was reading about body mass variation in the Gombe chimpanzees (Pusey et al. 2005), and the authors provide a very insightful quote from statistician George Box:

All models are wrong; some models are useful.

As I added to this on Facebook, “… some models can be hott.”
Miller G (2011). Statistics. ESP paper rekindles discussion about statistics. Science (New York, N.Y.), 331 (6015), 272-3 PMID: 21252321
Pusey, A., Oehlert, G., Williams, J., & Goodall, J. (2005). Influence of Ecological and Social Factors on Body Mass of Wild Chimpanzees International Journal of Primatology, 26 (1), 3-31 DOI: 10.1007/s10764-005-0721-2