Worst year in review

As we’re wrapping up what may be the worst year in recent global memory, especially geopolitically, let’s take a moment to review some more positive things that came up at Lawnchair in 2016.

Headed home


Alternate subtitle: Go West
This was a quiet year on the blog, with only 18 posts compared with the roughly thirty per year in 2014-2015. The major reason for the silence was that I moved from Kazakhstan back to the US to join the Anthropology Department at Vassar College in New York. With all the movement there was  less time to blog. Much of the second half of 2016 was spent setting up the Biological Anthropology Lab at Vassar, which will focus on “virtual” anthropology, including 3D surface scanning…


Cast of early Homo cranium KNM-ER 1470 and 3D surface scan made in the lab using an Artec Spider.

… and 3D printing.


gibbon endocast, created from a CT scan using Avizo software and printed on a Zortrax M200.

This first semester stateside I reworked my ‘Intro to Bio Anthro’ and ‘Race’ courses, which I think went pretty well being presented to an American audience for the first time. The latter class examines human biological variation, situating empirical observations in modern and historical social contexts. This is an especially important class today as 2016 saw a rise in nationalist and racist movements across the globe. Just yesterday Sarah Zhang published an essay in The Atlantic titled, “Will the Alt-right peddle a new kind of racist genetics?” It’s a great read, and I’m pleased to say that in the Race class this semester, we addressed all of the various social and scientific issues that came up in that piece. Admittedly though, I’m dismayed that this scary question has to be raised at this point in time, but it’s important for scholars to address and publicize given our society’s tragically short and selective memory.

So the first semester went well, and next semester I’ll be teaching a seminar focused on Homo naledi and a mid-level course on the prehistory of Central Asia. The Homo naledi class will be lots of fun, as we’ll used 3D printouts of H. naledi and other hominin species to address questions in human evolution. The Central Asia class will be good prep for when I return to Kazakhstan next summer to continue the hunt for human fossils in the country.

Osteology is still everywhere

A recurring segment over the years has been “Osteology Everywhere,” in which I recount how something I’ve seen out and about reminds me of a certain bone or fossil. Five of the blog 18 posts this year were OAs, and four of these were fossiliferous: I saw …

2016-02-09 16.26.31

Anatomy terminology hidden in 3D block letters,


Hominin canines in Kazakhstani baursaki cakes,


The Ardipithecus ramidus ilium in Almaty,


Homo naledi juvenile femur head in nutmeg,


And a Homo erectus cranium on a Bangkok sidewalk. As I’m teaching a fossil-focused seminar next semester, OA will probably become increasingly about fossils, and I’ll probably get my students involved in the fun as well.

New discoveries and enduring questions

The most-read post on the blog this year was about the recovery of the oldest human Nuclear DNA, from the 450,000 year old Sima de los Huesos fossils. My 2013 prediction that nuclear DNA would conflict with mtDNA by showing these hominins to be closer to Neandertals than Denisovans was shown to be correct.


These results are significant in part because they demonstrate one way that new insights can be gained from fossils that have been known for years. But more intriguingly, the ability of researchers to extract DNA from exceedingly old fossils suggests that this is only the tip of the iceberg.

The other major discoveries I covered this year were the capuchin monkeys who made stone tools and the possibility that living humans and extinct Neandertals share a common pattern of brain development.

Pride & Predator

An unrelated image from 2016 that makes me laugh.

The comparison between monkey-made and anthropogenic stone tools drives home the now dated fact that humans aren’t the only rock-modifiers. But the significance for the evolution of human tool use is less clear cut – what are the parallels (if any) in the motivation and modification of rocks between hominins and capuchins, who haven’t shared a common ancestor for tens of millions of years? I’m sure we’ll hear more on that in the coming years.

In the case of whether Neandertal brain development is like that of humans, I pointed out that new study’s results differ from previous research probably because of differences samples and methods. The only way to reconcile this issue is for the two teams of researchers, one based in Zurich and the other in Leipzig, to come together or for a third party to try their hand at the analysis. Maybe we’ll see this in 2017, maybe not.

There were other cool things in 2016 that I just didn’t get around to writing about, such as the publication of new Laetoli footprints with accompanying free 3D scans, new papers on Homo naledi that are in press in the Journal of Human Evolution, and new analysis of old Lucy (Australopithecus afarensis) fossils suggesting that she spent a lifetime climbing trees but may have sucked at it. But here’s hoping that 2017 tops 2016, on the blog, in the fossil record, and basically on Earth in general.


Osteology Everywhere: Skull in the Stone #FossilFriday edition

It’s that time of year again.


It’s the end of the year and I’ve got Homo erectus on the brain somethin fierce. Our precedent-erect first popped up in Africa around 1.9 million years ago, quickly spread throughout much of the Old World, and persisted until perhaps as late as ~ 100,000 years ago in Java, Indonesia. This was a very successful species by all accounts, and as a result of its great range and duration, you can imagine it was also pretty variable.


Hominin brain sizes. Boxes and whiskers represent sample tendencies and points are individual specimens. 1 = Australopithecus, 2 = Early Homo (cf. habilisrudolfensis), 3 = Dmanisi H. erectus, 4 = Early African H. erectus, 5 = Early Indonesian H. erectus, 6 = Chinese H. erectus, 7 = Later Indonesian H. erectus, 8 = modern humans.

Despite this great variation, H. erectus skulls generally share a common visage: long and low cranial vault, low forehead, protruding brow ridges, fun tuberosities and tori in the back. You’d recognize them anywhere. Including the sidewalk!


Homo erectus in front of Ploenchit Tower, Bangkok (lateral view, front is to the right).

The relief in this sidewalk slat superficially looks like a trace fossil of partial H. erectus cranium, the face either missing (from the lower right) or taphonomically displaced toward the left side of the tile (see here for actual H. erectus trace fossils). This looks really similar to H. erectus from Indonesia, not surprising given its discovery in Thailand. Why, it could have come straight out of Figure 6 from a 2006 paper by Yousuke Kaifu and colleagues:

Bangkok erectus.png

Left lateral views of Javanese H. erectus crania, modestly modified from Kaifu et al. (2006: Fig. 6). Front is to the left this time.

Using my insane photo editing skills, I’ve inserted the Ploenchit Tower trace fossil (reversed) within the horde of heads presented by Kaifu et al., above. Like many of the real fossils, the Ploenchit specimen is missing the face (due to taphonomy), the supraorbital torus or brow ridge juts out from a low-rising forehead, and the occipital bone also projects out about from the otherwise rounded contour of the cranium. Note that there is a good deal of variation in each of these features among the real fossils.

What a happy holiday accident to find a Homo erectus cranium on the street!


ResearchBlogging.org Reference
Kaifu Y, Aziz F, Indriati E, Jacob T, Kurniawan I, & Baba H (2008). Cranial morphology of Javanese Homo erectus: new evidence for continuous evolution, specialization, and terminal extinction. Journal of human evolution, 55 (4), 551-80 PMID: 18635247

Gona … Gona … not Gona work here anymore more

The Gona pelvic remains (A-D), and the reconstructed complete pelvis (E-J), Fig. 2 in Simpson et al., 2008.

A few years ago, Scott Simpson and colleagues published some of the most complete fossil human hips (right). The fossils are from the Busidima geological formation in the Gona region of Ethiopia, dated to between 0.9-1.4 million years ago. (Back when I wasn’t the only author of this blog, my friend and colleague Caroline VanSickle wrote about it here)

Researchers attributed the pelvis to Homo erectus on the basis of its late geological age and a number of derived (Homo-like) features. In addition, the pelvis’s very small size indicated it probably belonged to a female. One implication of this fossil was that male and female H. erectus differed drastically in body size.

Christopher Ruff (2010) took issue with how small this specimen was, noting that its overall size is more similar to the small-bodied Australopithecus species. Using the size of the hip joint as a proxy for body mass, Ruff argued Gona’s small size would imply a profound amount of sexual dimorphism in H. erectus: much higher than if Gona is excluded from this species, and higher than in modern humans or other fossil humans. Ruff thus proposed an alternative hypothesis to marked sexual dimorphism, that the Gona pelvis may have belonged to an australopithecine.

Fig. 3 From Ruff's (2010) reply. Australopiths (and Orrorin) are squares and Homo are circles. Busidima's estimated femur head diameter is represented by the star and bar.

Fig. 3 From Ruff’s (2010) reply. Australopiths (and Orrorin) are squares and Homo are circles. Gona’s estimated femur head diameter is represented by the star and bar.

Now, Simpson & team replied to Ruff’s comments, providing a laundry list of reasons why this pelvis is H. erectus and not Australopithecus. They cite many anatomical features of the pelvis shared with Gona and Homo fossils, but not australopithecines. They also note that there are many other bones reflective of body size, that seem to suggest a substantial amount of size variation in Homo fossils, even those from a single site such as Dmanisi (Lordkipanadze et al., 2007).

Interestingly, neither of these parties compared the implied size variation with that of living apes. So I’ll do it! Now, I do not have any acetabulum data, but a friend lent me some femur head measurements for living great apes a few years ago. Gona is a pelvis and not a femur, but there are more fossil femora than hips. Because there’s a very high correlation between femur head and acetabulum size, Ruff estimated Gona’s femur head diameter to be 32.6 mm (95% confidence interval: 30.1-35.2; Simpson et al. initially estimated 35.1 mm based on a different dataset and method). To quantify size variation, we can compare ratios of larger femur heads divided by smaller ones. Now, this ratio quantifies inter-individual variation, but it will underestimate sexual dimorphism since I’m likely sampling some same-sex pairs that aren’t so different in size. But this is just a quick and dirty look. So, here’s a box plot of these ratios for Homo fossils, larger specimens divided by Gona’s estimated femur head size in different time periods:

Ratio of a fossil Homo femur head diameter (HD) divided by Busidima's HD. E Homo = early Pleistocene, Contemporaneous = WT 15000 and OH 28, MP = Middle Pleistocene Homo. White boxes are based on Ruff's Busidima HD estimate, green boxes are based on Simpson et al.'s estimate.

Ratios of fossil Homo femur head diameter (HD) divided by Busidima’s (Gona’s) HD. E Homo = early Pleistocene, Contemporaneous = WT 15000 and OH 28, MP = Middle Pleistocene Homo. White boxes are based on Ruff’s Gona HD estimate, green boxes are based on Simpson et al.’s larger estimate. Boxes include 50% quartiles and the thick lines within are sample medians.

Clearly, Gona is much smaller than most other fossil Homo hips, since ratios are never smaller than 1.14. Average body size increases over time in the Homo lineage, reflected in increasing ratios from left to right on the plot. Early Pleistocene Homo fossils are fairly small, including Dmanisi, hence the lower ratios than later time periods. Middle Pleistocene Homo (MP), represented by the most fossils, shows a large range of variation, but even the smallest is still 1.17 times larger than the largest estimate of Gona’s femur head size. To put this into context, here are those green ratios (assuming a larger size for Gona) compared with large/small ratios from resampled pairs of living apes and humans:


The fossil ratios of larger/smaller HD from above, compared with resampled ratios from unsexed living apes and humans. Boxes include the 50% quartiles, and the thick lines within are sample medians. **(05/03/14: This plot has been modified from the original version post, which only included the fossil ratios based on the smaller Gona estimate)

What we see for the extant apes and humans makes sense: humans and chimpanzees show smaller differences on average, whereas average differences between gorillas and orangutans are larger. This accords with patterns of sexual dimorphism in these species. **What this larger box plot shows is that if we accept Ruff’s smaller average estimate of Gona’s femur head size (white boxes), it is relatively rare to sample two living specimens so different in size as seen between Gona and other fossils. If we use Simpson et al.’s larger Gona size estimate, variation is still elevated above most living ape ratios. Only when Gona is compared with the generally-smaller, earlier Pleistocene fossils, does the estimated range of variation show decent overlap with living species. Even then, the overlap is still above the median values.

These results based on living species agree with Ruff’s concern, that including Gona in Homo erectus results in an unusually large range of variation in this species. Such a large size range isn’t necessarily impossible, but it would be surprising to see more variation than is common in gorillas and orangutans, where sexual size dimorphism is tremendous. Ruff suggested that the australopith-sized Gona pelvis may in fact be an australopith. This was initially deemed unlikely, in part because the fossil is well-dated to relatively late, 0.9-1.4 million years ago. However, Dominguez-Rodgrigo and colleauges (2013) recently reported a 1.34 mya Australopithecus boisei skeleton from Olduvai Gorge, so it is possible that australopiths persisted longer than we’ve got fossil evidence for, and Gona is one of the latest holdouts.

So many possible explanations. More clarity may come with further study of the fossils at hand, but chances are we won’t be able to eliminate any of these possibilities until we get more fossils. (also, the post title wasn’t a jab at the fossils or researchers, but rather a reference to the movie Office Space)


Dominguez-Rodrigo et al. 2013. First partial skeleton of a 1.33-million-year-old Paranthropus boisei from Bed II, Olduvai Gorge, Tanzania. PLoS One 8: e80347.

Ruff C. 2010. Body size and body shape in early hominins – implications of the Gona pelvis. Journal of Human Evolution 58: 166-178.

Simpson S et al. 2008. A female Homo erectus pelvis from Gona, Ethiopia. Science 322: 1089-1092.

Simpson S et al. In press. The female Homo pelvis from Gona: Response to Ruff (2010). Journal of Human Evolution. http://dx.doi.org/10.1016/j.jhevol.2013.12.004