Results of the toe-tally easy lab activity

Alternate title: Dorsal canting in primate PPP4s

Earlier this year I suggested a classroom activity in which students can scrutinize the evidence used to argue that the >5 million year old (mya) Ardipithecus kadabba was bipedal. To recap: Ar. kadabba is represented by some teeth, a broken lower jaw, and some fragmentary postcrania. The main piece of evidence that it is a human ancestor and not just any old ape is from a single toe bone, and the orientation of its proximal joint. In Ar. kadabba and animals that hyperdorxiflex their toes (i.e., humans and other bipeds when walking), this joint faces upward, whereas it points backward or even downward in apes. This “dorsal canting” of the proximal toe joint has also been used as evidence that the 4.4 mya Ardipithecus ramidus and 3.5 mya owner of the mystery foot from Burtele are bipedal hominins. A question remains, though – does this anatomy really distinguish locomotor groups such as bipeds from quadrupeds?

Use ImageJ to measure the canting angle between the proximal joint and plantar surface. Proximal to the right, distal to the left.

STUDENT SCIENTISTS TO THE RESCUE! Use ImageJ to measure the canting angle between the proximal joint and plantar surface, as I’ve done on this Japanese macaque monkey (they are not bipedal). Proximal to the right, distal to the left Note I changed the measured angle from the March post.

I sicked my students in Ant 364 (Human Evolutionary Developmental Biology) here at NU on this task. I had students look at only 11 modern primates from the awesome KUPRI database. Most groups are only represented by 1 (Homo sapiens, Hylobates lar and Macaca fuscata) or two (Pongo species and Gorilla gorilla) specimens, all adults. For chimpanzees (Pan troglodytes) there is one infant and four adults. The database has more individuals, and it would be better to include more specimens to get better ideas of species’ ranges of variation, but this is a good training sample for a class assignment. The fossil group includes one Ardipithecus ramidus, one Ar. kadabba, one Australopithecus afarensis, and the PPP4 of the mystery foot from Burtele. The human and all fossils except Ar. kadabba are based off of lateral photographs and not CT scans like for the living primates, meaning there may be some error in their measurements, but we’ll assume for the assignment this is not a problem. Here are their results:

Dorsal canting angle of the fourth proximal pedal phalanx in primates.

Dorsal canting angle of the fourth proximal pedal phalanx in primates. The lower the angle, the more dorsally canted the proximal joint surface. The “Fossil” group includes specimens attributed to ArdipithecusAustralopithecus and something unknown.

Great apes have fairly high angles, meaning generally not dorsally canted proximal joint surfaces. The two gorillas fall right in the adult chimpanzee (adult) range of variation, while chimp infant and orangutans have much higher angles (≥90º means they’re actually angled downward or plantarly). The gibbon (Hylobates) is slightly lower than the chimpanzee range. The macaque has an even more dorsally canted joint, and the human even more so. The fossils, except the measurement for Ar. ramidus (see note above), have lower angles than living apes, but higher than the human and the monkey. If dorsal canting really is really a bony adaptation to forces experienced during life, then the fossil angles suggest these animals’ toes were dorsiflexed more so than living great apes (but not as much as the single monkey and human).

This lab helps students become familiar with CT data, the fossil record, taking measurements (students also measure maximum length of the toe bones and look at the relationship between length and canting), analyzing data, and hypothesis testing. You can also have fun exploring inter-observer error by comparing students’ measurements.

Here’s the full lab handout if you want to use or modify it for your own class: Lab 5-Toe instructions and report

Advertisements

Osteology Everywhere: Head for the hills

Last week I was exploring central England with the brilliant Jess Beck, an archaeology PhD student at the University of Michigan. Both of us avid (nay, rabid) connoisseurs of everything skeletal, we espied the likes of a specific human bone in the scenic landscape of the the Cotswolds. Check out JB’s blog, Bone Broke, for her take on this geographical/geological/skeletal formation (as well as for lots of killer osteology and bioarchaeology tips and tricks). Do it now! NOW!

After you’ve checked out her site, behold this sight – what bone is lurking in the landscape?

osteourrywhere Cotswolds

As with Rorschach inkblots, probably lots of bones could be seen in this image. But what Jess & I saw was a hamate, the greener hue hewn into the hills, whose sizeable hamulus runs from the bottom right to join the rest of the carpal around the center of the image. Here’s what a real hamate looks like:

hamate

Top: Human hamate from Human Osteology (White, Black & Folkens, 2012). Bottom: rough anatomical position of the hamate in the human wrist.

The hamulus of the hamate is an attachment point for the flexor retinaculum, the band of fascia stretching across your wrist to hold your extrinsic digital flexor muscles (or rather, their tendons) in place; you could think of it as the bridge covering the carpal tunnel. Now, comparing the grassy hamulus with an actual human one, you’ll spot two important differences: first, the grassy one isn’t blunt like the humans’, but ends in a long point. Oops! Just pretend it’s rounded off. Second, the grassy hamulus is huge relative to the overall size of the bone (or valley) compared with the human form. The size of the hamulus partially reflects the size of the carpal tunnel: chimpanzees, with powerful wrists and forearms, have long hamuli.

A huge nerd, I didn’t just see any hamate in this Cotswold vale. I also immediately thought of KNM-WT 22944, an Australopithecus afarensis hamate from the 3.5 million year old site of South Turkwel in Kenya (Ward et al., 1997):

WT 22944-Ward &al 1997

From Ward et al., 1999. Sorry it’s not in the same orientation as the above image. Hamulus is the projection pointing to the bottom left corner of the “medial” image.

An absolutely and relatively massive hamulus in WT 22944 suggests whoever this bone belonged to had some powerful gripping capabilities, while a geologically younger A. afarensis hamate from Hadar (AL 333-50) had a smaller, more human-like hamulus. Maybe (some) A. afarensis were still using their arms a lot for tree-climbing, in spite of being more than capable bipeds (I’ve talked about this before here)….

One final thought: People do like the way she says, “hamate.”

Ward et al., 1999. South Turkwel: a new pliocene hominid site in Kenya. Journal of Human Evolution 36: 69-95. link

White et al., 2012. Human Osteology 3rd Edition. link

Why Lucy, what sweet kicks you had

For decades people have debated whether Australopithecus afarensis was an obligate biped like us, or whether our ancestor was a little less lithe in life on land. They asked, sort of, “Would Lucy have rocked some sweet Air Jordans, or would she have put some flat-foot orthotics in her new kicks?”

Carol Ward and colleagues report on a new fourth metatarsal of Australopithecus afarensis from Hadar in Ethiopia, over 3.2 million years old. The foot bone shows that A. afarensis had the two foot arches that we humans enjoy today.
Metatarsals are the longbones comprising much of the foot right before your silly-looking toes. One exceptional thing about our metatarsals compared to our ape cousins is that they contribute to two arches, one running front-to-back and another side-to-side. The arches provide critical support to our foot for bipedal stance, and a little Fred-Astaire-springiness as our foot hits the ground and then lifts off again when walking and running and sashaying.
The new A. afarensis metatarsal (AL 333-160, right) shows that by 3.2 million years ago, our ancestors had these arches, too. The twisting and angulation of the shaft relative to the base show these arches are similar to humans and our later fossil ancestors, whereas apes’ MT4s tend to be less twisted and angled. Such morphology was hinted at by the famous Laetoli footprints from Tanzania, around 3.7 million years ago, also attributed to A. afarensis. Other evidence from the skeleton suggested Lucy was a biped and nothing else, and so this new find from Hadar further solidifies the idea that some of our skeletal adaptations to bipedalism are ancient indeed.
UPDATE: Thinking about this finding in the shower this morning, I recalled that buddies Jerry DeSilva and Zach Throckmorton recently published a study where they concluded, based on the morphology of the end of the tibia, that A. afarensis probably had at least a rear-foot arch. Interestingly, though, they found some hominid specimens probably had “asymptomatic flatfoot.” Lucy (AL 288) was among these, so maybe she’d be sporting orthoticized Jordans after all.
ResearchBlogging.org
The Papers
DeSilva JM, & Throckmorton ZJ (2010). Lucy’s flat feet: the relationship between the ankle and rearfoot arching in early hominins. PloS one, 5 (12) PMID: 21203433

Ward, C., Kimbel, W., & Johanson, D. (2011). Complete Fourth Metatarsal and Arches in the Foot of Australopithecus afarensis Science, 331 (6018), 750-753 DOI: 10.1126/science.1201463

01/01/2011: Looking forward and backward, so fast you may barf

2010 was a big year for anthropology and lawn-chair-anthropologists. There was laughter and crying, and maybe also some yelling. And smiling. Let’s take a look back at some of the big events of the past year.

  1. Ancient DNA. What a great year for ancient human DNA! In April, Krause and colleagues (2010) announced the sequencing of mitochondrial DNA from a ~50,000 year old girl from Denisova in Siberia. This sequence was twice as divergent from humans as Neandertal mtDNA, which really shocked a lot of people. Then just a week or so ago Reich and colleagues (2010) announced nuclear DNA from the site. The big news was that these ancient humans contributed genes to modern day Melanesians, but not other modern humans sampled. In May, Green and the Pääbo lab announced a draft sequence of the Neandertal nuclear genome. Like with the Denisova story, Neandertal mtDNA is fairly distinct from that of modern humans, and the nuclear genome revealed contribution to some modern humans but not to others. Basically, ancient DNA came out supporting the multiregional model of modern human origins.
  2. Malapa hominids. Lee Berger and researchers announced a new fossil site, Malapa, in South Africa. This site yielded 2 partial skeletons (and others forthcoming), including a very well-preserved skull of a subadult. Superficially the thing looked to me like Australopithecus africanus, though the authors argue that it shows some features derived toward the condition of early Homo. But at an estimated 1.9-1.7 million years old, it’s a little too young to have anything to do with the origin of Homo – not to mention its small 400 cubic centimeter cranial capacity. I really don’t know what to do with Malapa yet.
  3. Woranso-Mille Australopithecus afarensis. This site dates to around 3.6 million years ago, so it’s roughly contemporaneous with Laetoli afarensis, or intermediate in age between Laetoli and later afarensis sites like Maka and Hadar. Haile-Selassie and colleagues described a partial skeleton from the site. This male includes part of the pelvis, which didn’t get much coverage. But it has a 1st rib, scapula and clavicle, indicating a fairly human-like (rather than ape-like) torso shape. So even for how well we know A. afarensis, we’re always learning more about our ancestor.
  4. Saadanius hijazensis and catarrhines. I didn’t blog about this one at the time as I was getting ready to hit the field. But this was exciting because Iyad Zalmout and friends here at UM discovered and analyzed it. Saadanius was found in ~29 million year old deposits in Saudi Arabia, right around the estimated time of origins of apes. The fossil looks like an Aegyptopithecus to my untrained eye, but apparently may be similar to the last common ancestor of apes and old world monkeys.
  5. Field work. I had my first (of hopefully more!) field season at Dmanisi in Georgia. Paleoanthropology would be nothing without fossils, so an important aspect of the job I’d like to do more of is increasing the fossil record. Dmanisi is an amazing place for this, being among the oldest human sites outside Africa, and the interesting ‘intermediacy’ of the Dmanisi hominids between early Homo and more classic H. erectus. We found some great stuff last year, and I anticipate the site will produce more great fossils in the future. Who knows, maybe more fossiliferous deposits will be found in nearby regions?
So it was a helluva year, 2010. What excitement will 2011 bring? Here are some things I’d like to, or expect to, see this year:
  1. More ancient DNA – the surprise that many researchers got from Denisova and Neandertal ancient DNA clearly warrants more work on other ancient DNA. What does that of other fossil humans look like? Will the picture of human origins become further complicated (that is, different from paradigmatic out-of-Africa replacement)? In this regard we need to analyze DNA from more late Pleistocene fossils regarded as ‘anatomically modern.’
  2. a) More about Malapa. I want to say I heard somewhere that there were more hominids than just the 2 presented in the Science paper. These additional specimens will provide further evidence, including what variation within the site was like, and how it fits with other South African specimens. From the appearance of things, these fossils may be late-persisting A. africanus, somehow contemporaneous (roughly sympatric?) with A. robustus and possibly early Homo. Perhaps more work on the geology and taphonomy of Malapa will show it to be older, contemporaneous with the nearby site of Sterkfontein known for abundant A. africanus fossils? Probably not.

    b) More hominid sites and fossils in South Africa. One thing that was neat about Malapa was that it was from slightly outside the rest of the South African ‘cradle’ sites like Sterkfontein, Kromdraai, Drimolen, and Swartkrans. When I was in the area in 2008 I went with some researchers on survey of the Sterkfontein valley, new sites are definitely being sought. Perhaps 2011 will see the discovery of more Malapa-like sites?
  3. Human fossils from East Asia. Maybe even ancient DNA recovery from the region. East Asia has long been thought to be a potential ‘center’ of human origins. Earlier in the year, fossils coming from Zhirendong suggest some of the earliest evidence of chin, arguably a ‘modern human’ feature. Recent fossil and genetic discoveries ought to usher a renewed vigor in examining human evolution in Asia.

That’s all I feel like doing for now. Happy New Year, all!

ResearchBlogging.org
References
Berger, L., de Ruiter, D., Churchill, S., Schmid, P., Carlson, K., Dirks, P., & Kibii, J. (2010). Australopithecus sediba: A New Species of Homo-Like Australopith from South Africa Science, 328 (5975), 195-204 DOI: 10.1126/science.1184944
Cann, R., Stoneking, M., & Wilson, A. (1987). Mitochondrial DNA and human evolution Nature, 325 (6099), 31-36 DOI: 10.1038/325031a0
Green, R., Krause, J., Briggs, A., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M., Hansen, N., Durand, E., Malaspinas, A., Jensen, J., Marques-Bonet, T., Alkan, C., Prufer, K., Meyer, M., Burbano, H., Good, J., Schultz, R., Aximu-Petri, A., Butthof, A., Hober, B., Hoffner, B., Siegemund, M., Weihmann, A., Nusbaum, C., Lander, E., Russ, C., Novod, N., Affourtit, J., Egholm, M., Verna, C., Rudan, P., Brajkovic, D., Kucan, Z., Gusic, I., Doronichev, V., Golovanova, L., Lalueza-Fox, C., de la Rasilla, M., Fortea, J., Rosas, A., Schmitz, R., Johnson, P., Eichler, E., Falush, D., Birney, E., Mullikin, J., Slatkin, M., Nielsen, R., Kelso, J., Lachmann, M., Reich, D., & Paabo, S. (2010). A Draft Sequence of the Neandertal Genome Science, 328 (5979), 710-722 DOI: 10.1126/science.1188021
Haile-Selassie, Y., Latimer, B., Alene, M., Deino, A., Gibert, L., Melillo, S., Saylor, B., Scott, G., & Lovejoy, C. (2010). An early Australopithecus afarensis postcranium from Woranso-Mille, Ethiopia Proceedings of the National Academy of Sciences, 107 (27), 12121-12126 DOI: 10.1073/pnas.1004527107
Krause, J., Fu, Q., Good, J., Viola, B., Shunkov, M., Derevianko, A., & Pääbo, S. (2010). The complete mitochondrial DNA genome of an unknown hominin from southern Siberia Nature, 464 (7290), 894-897 DOI: 10.1038/nature08976
Liu W, Jin CZ, Zhang YQ, Cai YJ, Xing S, Wu XJ, Cheng H, Edwards RL, Pan WS, Qin DG, An ZS, Trinkaus E, & Wu XZ (2010). Human remains from Zhirendong, South China, and modern human emergence in East Asia. Proceedings of the National Academy of Sciences of the United States of America, 107 (45), 19201-6 PMID: 20974952
Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, Viola B, Briggs AW, Stenzel U, Johnson PL, Maricic T, Good JM, Marques-Bonet T, Alkan C, Fu Q, Mallick S, Li H, Meyer M, Eichler EE, Stoneking M, Richards M, Talamo S, Shunkov MV, Derevianko AP, Hublin JJ, Kelso J, Slatkin M, & Pääbo S (2010). Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468 (7327), 1053-60 PMID: 21179161
Zalmout IS, Sanders WJ, Maclatchy LM, Gunnell GF, Al-Mufarreh YA, Ali MA, Nasser AA, Al-Masari AM, Al-Sobhi SA, Nadhra AO, Matari AH, Wilson JA, & Gingerich PD (2010). New Oligocene primate from Saudi Arabia and the divergence of apes and Old World monkeys. Nature, 466 (7304), 360-4 PMID: 20631798

"Big Man" and the scapula of Australopithecus afarensis

Last November I reported on recently described Australopithecus cf. afarensis craniodental remains from the site of Woranso Mille in Ethiopia. These fossils are significant in part because they date to around 3.6 million years ago; most of the postcranial evidence for A. afarensis comes from Hadar (~3.4 – 2.9 million years) or Maka (~3.5 million years). It is pretty awesome, then, that Yohannes Haile-Selassie and colleagues (2010a) have just reported on a partial skeleton from Woranso-Mille.


The specimen is given the catalog number KSD-VP-1/1 (right, from Nature), and the nickname Kadanuumuu, meaning “Big Man” in the language of the Afar people who live in the region where the fossils were discovered. Here, I’ll be focusing on the scapula.

Researchers have debated about what the scapular form of A. afarensis means functionally – how could, and did, these creatures use their shoulders? The scapula of AL 288 (the famous “Lucy”) preserves part of the glenoid fossa (shoulder socket) and only a little of the surrounding bone including the scapular spine (below). It has been argued that the angle between the glenoid fossa and the lateral border is more similar to modern apes than to humans. That is, the shoulder socket may have been oriented more upward, like in modern apes, compared to humans whose socket faces more to the side. The implication is that A. afarensis may have been preferentially exploiting arboreal environments.

Left: AL 288 scapular fragment. The glenoid fossa is the hollow that faces to the right, the lateral border is at the bottom paralleling the label “AL 288-1L.” The scapular spine is preserved only at the base, it is the small uprising of bone just to the left of the glenoid fossa. From Haile-Selassie et al. 2010b, Fig. S21.

Similarly, a juvenile afarensis skeleton from the Ethiopian site of Dikika (Alemseged et al. 2006), dating to around 3.4 million years ago, also suggested an ape-like shoulder for this extinct human ancestor. Principle components analysis of several measurements from the Dikika scapula showed it to be very similar to gorillas of comparable age, in terms of overall shape and proportions.

So from these two scapulae, one belonging to a very small-bodied female, the other from a small ~3-year-old possible female, we get the picture that A. afarensis had a fairly ape-like (i.e. arboreal) shoulder orientation, and may not have had independent movement of the head and trunk that we modern humans enjoy. Nevertheless, it is still unclear whether this means that the afarensis scapula functioned like that of an ape, and hence its shape, or whether the similarity in shape is a ‘hold-over’ from having an arboreal ancestor. I will say, I think one very telling feature noticeable in even the fragmentary AL 288 is the relative position and orientation of the scapular spine. Note that in the apes (the two juveniles scapulae on the right of the diagram to the left), the scapular spine roughly parallels the lateral border, and as a result, the flat areas above and below the spine are roughly equal in size. The above area houses the supraspinatus muscle, a rotator cuff muscle that acts largely in elevating the arm above the head and stabilizing the shoulder joint. In humans and afarensis, in contrast, the lower (insfraspinous) fossa is fairly large compared to the upper (supraspinous) fossa. Thus, the argument can be made that in humans and hominids, less power is needed to raise the arms over the head, or that humans and hominids have a greater reliance on the infraspinatus muscle for bringing the arm down toward the body and stabilizing the shoulder joint.

Now, KSD-VP-1 provides a remarkably complete scapula of an adult afarensis (right). In contrast to the specimens described above, KSD-VP-1 is very human-like. To the naked eye, and as borne out by principle components analysis of scapular angles, this thing is very human-like.

Now the question is, why does the morphology of this new specimen seem at odds with Lucy and Dikika? Part of the answer could be scaling – indeed, the authors note that the orientation of the glenoid relative to the lateral border (more specifically the scapular bar) in AL 288 can be found in modern humans of small size.

But that still does not answer the question of why the complete adult afarensis scapula is like adult humans, whereas the child afarensis is like young gorillas. The authors posit that perhaps it is due to Dikika’s fairly large supraspinous fossa. They also suggest that the measurements used in Alemseged et al’s study could not capture functional and discriminatory information about scapula shape. Nevertheless, a simple visual comparison the Dikika and KSD (x-ray…) scapulae reveals them to look fairly different, i.e. Dikika is relatively broader side-to-side.

Could ontogeny explain the differences between the child and adult afarensis? In a study of scapular growth and development in living primates, Young (2008) found childhood growth does not appear to explain adult shape variation. That is to say, most aspects of species-specific morphology are present in subadult scapulae. Rather, most variation in scapular shape among modern primates appears to be due to functional differences: climbers’ scapulae differ consistently from quadrupeds’. So what does that imply? That at 3.59 million years, adult male A. afarensis were not using their shoulders for arboreal activities, but at 3.4 million years ago, subadults were? Maybe this is just normal intraspecific variation? Maybe the ontogeny of the scapulae needs to be examined further?

I have to say I agree with Haile-Selassie et al. (2010a) here, that differences in the statistical analyses between the current study and that of Alemseged et al. (2006) may be partly responsible for the different interpretations of A. afarensis scapular morphology. Still, visual inspection of pictures of the fossils suggests to me that even if the principle components analyses were carried out using the same variables (Alemseged et al. used linear measurements, H-S et al. used angles), Dikika might seem gorilla-like, KSD still human-like; Nota bene that principle components analysis is not actually a test in itself, but rather an exploratory statistical technique. As such, it will never really “tell” how a bone was used. Still, I think this does raise an important issue about scapular function and ontogeny in hominoids.

References
Alemseged Z, Spoor F, Kimble WH, Bobe R, Geraads D, Reed D, and Wynn JG. 2006. A juvenile early hominin skeleton from Dikika, Ethiopia. Nature 443: 296-301.

Haile-Selassie Y, Latimer BM, Alene M, Deino AL, Gibert L, Melillo, Saylor BZ, Scott GR, and Lovejoy CO. 2010a. An early Australopithecus afarensis postcranium from Woranso-Mille, Ethiopia. Proceedings of the National Academy of Sciences, USA, in press.

Haile-Selassie et al. 2010b. Supplementary Online Material to 2010a.

Young NM. 2008. A Comparison of the ONtogeny of Shape Variation in the Anthropoid Scapula: Functional and Phylogenetic Signal. American Journal of Physical Anthropology 136: 247-264.

Bridging the gap: Australopithecus from Woranso

Recently discovered Australopithecus fossils from the Ethiopian site of Woranso-Mille help fill a gap between parts of the early hominin fossil record (Haile-Selassie et al, in press). The fossils date to between 3.8-3.6 million years ago (Ma), and consist of several teeth and a jaw fragment. These specimens show a number of features that are intermediate in morphology between the earlier Au. anamensis (4.2-3.9 Ma) and later Au. afarensis from Laetoli (~3.7-3.5 Ma). As a result, the Woranso fossils lend support to the hypothesis that Au. anamensis and Au. afarensis represent a single evolving species (i.e. Kimbel et al. 2006).



I think this is exciting for two reasons. First, the fossils bridge the morphological gap between the older anamensis and younger afarensis fossils. As a result, we get to ‘see’ anagenetic evolution—changes within a single lineage. One topic in evolutionary biology is about the mode and tempo of evolution: are species fairly constant, then evolve into multiple ‘daughter’ species (“punctuated equilibrium”); or does evolutionary change tend to occur more within individual lineages (“anagenesis”)? Obviously neither is mutually exclusive, rather evolution is probably best characterized variously by both processes. Still, in the world of paleoanthropology, where many researchers argue for rapid and constant species turnover within the human lineage, it is cool to see a convincing argument for anagenesis. However, this ignores the meager (but intriguing) K. platyops material (Leakey et al. 2001), dating to around 3.5 Ma, possibly indicating the proliferation of at least two hominin species shortly after 4 Ma.



Second, the morphological intermediacy of the Woranso fossils allow a look at the patterns of evolutionary change within the anamensisafarensis lineage. The authors note that the teeth of the Woranso hominins are generally more similar to anamensis, but have some derived characters of the later afarensis teeth. If we truly have a glimpse of dental evolution within a single lineage, we can ask questions about the evolution and development (“Evo-Devo”) of teeth. Are changes in these teeth correlated in a way that could be predicted by certain developmental models? Or is selection acting independently on various tooth traits?



References

Haile-Selassie Y, Saylor BZ, Deino A, Alene M, and Latimer BM. New hominid fossils from Woranso-Mille (Central Afar, Ethiopia) and Taxonomy of Early Australopithecus. American Journal of Physical Anthropology, in press.

Kimbel WH, Lockwood CA, Ward CV, Leakey MG, Rak Y, and Johanson DC. 2006. Was Australopithecus anamensis ancestral to A. afarensis? A case of anagenesis in the hominin fossil record. Journal of Human Evolution 51: 134-152.

Leakey MG, Spoor F, Brown FH, Gathogo PN, Kiarie C, Leakey LN, and McDougall I. 2001. New hominin genus from eastern Africa shows diverse middle Pliocene lineages. Nature 410: 433-440.

Australopithecus afarensis: A mythical creation of Jim Henson?

DIK-1-1 is a nearly complete juvenile Australopithecus afarensis skeleton, from the site of Dikika in Ethiopia (Alemseged et al. 2006). The spectacular skeleton is approximately 3.3 million years old. Such a rare find is great news for paleoanthropologists, since its completeness provides much-needed information about growth and development, juvenile morphology, and even bones that rarely or almost never preserve well from hominins, including a scapula (part of the shoulder) and hyoid bone (sits in the middle of the throat, unwilling to be friends with any other bones). All in all, it’s a very interesting specimen, whose feet show that it was adapted for bipedalism. But its “gorilla-like” scapula may indicate some degree of climbing behavior. The find made the cover of Nature, and here’s part of Figure 1 from the paper:
Now compare this to Jen, a gelfling from the 1982 Jim Henson film The Dark Crystal.
Creepy. But the resemblance is dead-on, just look at the prognathic faces of DIK-1-1, above, and Jen here.

So what do we learn? Most probably A. afarensis is ancestral to the gelflings, as well as later, more well-known hominins like A. africanus, robustus, boisei, and our genus, Homo. I suppose the gelflings were an evolutionary ‘side-branch.’ And since DIK-1-1 is a juvenile while this gelfling is an adult, we have documented here a case of paedomorphosis, an evolutionary phenomenon in which the adults of the descendant taxon appear more similar to the juveniles of their ancestors (for a real-life example of this, see the axolotl).

Also, Alemseged et al. posit that the gorilla-like morphology of the Dikika scapula may reflect climbing behavior. Well, if we remember The Dark Crystal, we’ll recall that Jen climbed Aughra‘s model solar system with gusto when the bad guys came and messed the place up. So the functional interpretation of the fossil shoulder is corroborated with behavioral data from the animatronic puppet. Oh, also I think the gelflings lived in a wooded, perhaps even forest environment. Such environments likely characterized the habitats of earlier hominins, but isotopic and relative abundances of different kinds of other fossil animals suggest that Dikika may have been a bit more open (Wynn et al. 2006).

ResearchBlogging.orgReferences
Alemseged Z, Spoor F, Kimbel WH, Bobe R, Geraads D, Reed D, & Wynn JG (2006). A juvenile early hominin skeleton from Dikika, Ethiopia. Nature, 443 (7109), 296-301 PMID: 16988704

Wynn J, Alemseged Z, Bobe R, Geraads D, Reed D, and Roman D. 2006. Geological and paleontological context of a Pliocene juvenile hominin at Dikika, Ethiopia. Nature 443: 332-336.

*Edited 08 Nov 2015