eFfing #FossilFriday: Subfossil lemurs

Hard to resist the headline, “Enormous underwater fossil graveyard found,” from the National Science Foundation. The NSF posts a video detailing the discovery of an underwater cave system containing “hundreds of potentially 1,000-year-old [lemur] skeletons…” in Madagascar. As a paleontologist, hearing about the discovery large numbers of ancient skeletons is musical, like hearing Love This Giant or the new T Swift for the first time.

Two lemur crania in an underwater cave on Madagascar. Photo from nbcnews.com.

Two lemur crania in an underwater cave on Madagascar. Photo from nbcnews.com.

It’s a pretty remarkable discovery – hundreds if not thousands of bones representing many complete skeletons of various extinct lemur species. And toward the end of the clip is a skull of a pretty badass looking big cat. The video shows piles of loose bones dredged up from the cave. These will reveal lots of information about the biology of these recently extinct animals, especially if researchers can keep associated bones together.

So what are these animals? Lemurs are one of the most primitive living types of primates – although they are relatively closely related to us humans, they retain many characteristics of ancestral mammals. I know it’s hard to believe this aye-aye here is more closely related to you than to rodents, but it is:

An aye-aye (Daubentonia madagascarensis) using its narrow and elongated middle finger to fish for for grubs inside a tree that it’s opened up with its teeth.

Lemurs are found only on the island of Madagascar, and over the past several millions of years they have diversified into the roughly 100 species inhabiting the island today. But even just a few thousand years ago, there were more kinds of lemurs. This includes Megaladapis, the large-bodied “koala lemur,” and Hadropithecus, whose skull bears a striking resemblance to the extinct hominin Australopithecus boisei. As  Laurie Godfrey says in the video, “two thirds of the animals that lived there only a thousand years ago are gone.” Humans are probably largely responsible for the extinction of many Malagasy lemurs in both the past and especially the present.

Much of the ‘fossil’ record for lemurs is recent by fossil standards, and so most specimens haven’t become fully fossilized. As a result, lemur paleontology is besprinkled with the term “subfossil,” indicating bones that are really old and belong to extinct animals, but don’t fit the technical definition of fossils. The lemur subfossil record has taught us a lot about the evolutionary history, adaptations, and recently even genetics of this primitive group of primates, as well as about the ecological history of Madagascar. It will be very interesting to see what new insights will come from the recently discovered scores of underwater skeletons.

OH NO IT’S HADROPITHECUS

(Figure 3 from Ryan et al., 2008. Scale bar is 1 cm)

Another small Middle Pleistocene person

Last year I brought up the implications of the small female pelvis from Gona, Ethiopia for body size variation in Homo erectus (see previous post). This individual was much smaller than other Middle Pleistocene Homo fossils, indicating size variation comparable to highly sexually dimorphic gorillas and unlike recent human populations. Before this pelvis, most known Homo erectus fossils were fairly large (comparable to living people), with only a few hints of much smaller individuals (e.g., KNM-ER 427000, KNM-OL 45500). Now joining this petite party, this tiny troop, this little lot, this compact cadre, etc., is KNM-WT 51261, a 750,000 year old molar from Kenya (Maddux et al., in press).

Occlusal area for hominin first molars. The tooth is from Fig. 2 and the plot from Fig. 3 in the paper.

Occlusal area for first molars in the genus Homo. The tooth image is from Fig. 2 and the plot from Fig. 3 in Maddux et al. Lookit how tiny it is!

This ‘new’ specimen substantially increases the range of size variation among early African H. erectus molars, although the expanded range isn’t remarkable compared with later Homo samples such as from Zhoukoudian cave in China or Neandertals. What is different, though, is that most of the highly variable samples show a fairly continuous range of variation, while the WT 51261 molar is a considerable outlier from the rest of the African Middle Pleistocene sample (a lot like the situation with the Gona pelvis). So this tooth re-raises an important question: were smaller specimens like Gona and WT 51261 as rare in life as they are in the fossil record, or was such great size variation common in the Middle Pleistocene? How we reconstruct what kind of animal Homo erectus was differs depending on the answer to this question.

eFfing Fossil Friday: Funky facial flanges #FFF

David Krause and colleagues announced in this week’s Nature the discovery of a new species of extinct mammal, Vintana sertichi, that lived in what is now Madagascar between 66-72 million years ago. The species is based on a very well-preserved cranium of an early gondwanatherian (if you want to impress your friends this weekend, gratuitously use the word “gondwanatherian”). I don’t know much about early mammals like this, but it sounds like it was a weird creature (see the Stony Brook press release). Just looking at it’s face there’s something that sticks out as strange:

Ventana sertichi cranium (Reich et al. 2014, Figure 1a). Left is a 3D CT reconstruction, right is a line drawing highlighting all the individual bones (so many cranial bones). The view is from the right side, so the nose is on the right, the eye is the big hollow in the middle, and the back of the skull is on the left. The jugal flanges are the downward projections.

Vintana sertichi cranium (Reich et al. 2014, Figure 1a). On the left is a 3D CT reconstruction, and on the right is a line drawing highlighting all the individual bones (so many cranial bones). The view is from the right side, so the nose is to the right, the eye socket is the shadowy hollow in the middle, and the back of the skull is on the left. The jugal flanges are the downward projections.

Jutting downward from the sides of the jaw are ‘jugal flanges,’ projections of bone on the homologs of human cheeks. Projections of like these usually serve as muscle attachment sites, and the size of the projection generally reflects the size of the muscle. These facial flanges anchor the masseter muscle, a major chewing muscle that helps close the jaw. The size of this flange in Vintana suggests its chomp packed a punch. A debilitating bite. A face not even a mother could love (so now they’re extinct).

Vintana‘s bony tear-catchers caught my eye because most primates I’ve seen have, you know, less heinous faces. Scouring the internet, big jugal flanges are a fairly rare sight, but can apparently be found in glyptodonts (giant, armadillo-like mammals that lived tens of thousands of years ago) and various sloths. The closest thing I’ve seen to this gross bony flange in Primates are on the zygomatic bones of some extinct, baboon-like animals, such as Dinopithecus ingens:

Fragmentary skull, viewed from the top, of Papio (a.k.a. Dinopithecus) ingens, from Swartkrans, South Africa. Photo credit: CalPhotos.

Fragmentary skull, viewed from the top, of Papio (a.k.a. Dinopithecus) ingens, from Swartkrans, South Africa. As a punishment for its zygomatic excess, its face was confiscated. Photo credit: CalPhotos.

and Theropithecus brumpti

Theropithecus brumpti from the Omo basin. Photo credit: CalPhotos.

Theropithecus brumpti from the Omo Basin, Ethiopia. Photo credit: CalPhotos.

So some primates dabbled in jugal flangery like Vintana, but Natural Selection was having none of it. Anyway, Vintana overcame this craniofacial adversity with characteristic Mesozoic moxie, and is an important piece in the puzzle of mammal evolution. It will be interesting to see what other mammalian surprises the Mesozoic has in store for paleontologists.

eFfing Fossil Friday: resurrected

It’s been a quiet month here at Lawnchair, as I’ve just returned from the Rising Star Workshop, taking part in the analysis and description of new hominin remains from South Africa. We’ll have some exciting announcements to make in the near future.

Also, I petted a ferocious, bloodthirsty lion!20140601_160436

To ease back into the Lawnchair, I thought I’d resurrect eFfing Fossil Friday, a short-lived series from when I was collecting data for my dissertation three years ago (speaking of which, a paper related to my dissertation came out in AJPA during the Workshop, as well). A lot has happened since the last installment of FFF, so whose heads will be on the chopping block today?

Crania 9, 15 and 17 (clockwise from top left). Cranium 9 is an early adolescent and the other two are adults - lookit how the facial anatomy changes with age!

Crania #s 9, 15 and 17 (clockwise from top left). Cranium 9 is an early adolescent and the other two are adults – lookit how the facial anatomy changes with age! (Fig. 1 from Arsuaga et al., 2014)

It’s new crania from Sima de los Huesos, Atapuerca! These are published today in the journal Science by Juan L. Arsuaga and colleagues. Sima de los Huesos is a pretty remarkable site in Spain dating to the Middle Pleistocene; the site is probably at least 400,000 years old, and the remains of at least 28 individuals. These specimens show many similarities with Neandertals who later inhabited the area, but don’t have all of the ‘classic’ Neandertal features.

What I like about this figure from the paper is that the comparison of the adolescent (top left) with adults (the other two) shows how the skull changes during growth. The major visible difference is that the face sticks out in front of the brain case more in the adults than the adolescent. As a result, the adolescent lacks a supraorbital torus (“brow ridge”), but this would have developed as the face grew forward and away from the brain. Ontogeny!

Calotte or Carapace?

Is this the top of a hominid skull, replete with sagittal crest running down the middle, or is it the top of a tortoise shell?

This image comes from great resource I just found (thanks to Louise Leakey on Twitter) for paleoanthropology students – africanfossils.org. I won’t answer here whether this is hominid or turtle, you’ll have to find it at the African Fossils site.

The site has 3D, manipulable images of fossil hominids and other animals from Kenya and Tanzania. The Smithsonian Museum of Natural History also has a very nice 3D collection, similarly manipulable. Resolution isn’t always what you might want it to be (for instance, you won’t be able to tell if the basi-occipital suture is fused in the Homo erectus cranium KNM-ER 42700), but you still get good overall view of some neat and bizarre animals. Like this robust australopithecus! (KNM-ER 406) Hey, its brain case does look kinda like the pic above…

An end to Ediacaran embryology?

The things people can do these days. Therese Huldtgren and colleagues reported in last week’s Science that they identified nucleus-like structures in 570 million year old fossilized cells from China. These date to the Ediacaran period, before the “Cambrian explosion” of animal life forms. Superficially, these fossilized balls of cells rather resemble the early stages of animal embryos (see A in the figure below), in which cells are dividing and increasing in number but the overall embryo size stays the same. To get the “inside story” (…sorry), Huldtgren and team used very fancy “synchrotron x-ray computed tomography” to look at the insides of these fossilized cells. The resulting images have micrometer resolution – that’s one thousandth* of a millimeter. The things people can do these days.

Fig. 2 from Huldtgren et al. 2011

And lo! each of these fossilized cells contains a small, globular structure that looks like a nucleus (left; if you cross your eyes you can merge the 2 halves of fig. C to make it look even more 3D).

Could these really be the earliest animal embryos? Probably not – some of these balls-of-cells had what resemble budding spores, unlike animals but similar to “nonmetazoan [non-animal] holozoans.” In other words, something neat and old, but not one of our earliest ancestors.

I’m really impressed with the biological applications of computed tomography (CT). Recall that a while ago, I posted about the potential to use synchrotron tomography to examine the small-scale, internal structure of bone (e.g. Cooper et al. 2011). Such non-destructive, high-resolution imaging techniques could be used to compare near-cellular-level growth in living and fossil animals. This is really significant because it adds a completely new kind of information we can get from fossils, which before now could only be studied well at the gross, macroscopic level (though scanning electron microscopy of teeth has been very informative about diet; see for example Ungar and Sponheimer 2011). Indeed, one of the most common applications of CT imaging in anthropology is making 3D computer models of body parts for morphometric (shape) analysis.

But high-resolution, synchrotron CT imaging opens up a whole new world of paleontology, new questions that can be asked. For example, many researchers have examined the microscopic appearance of bone surfaces to determine whether bone was being added or removed during growth, and comparing different species (Bromage 1989, O’Higgins et al. 2001, McCollum 2008, Martinez-Mata et al. 2010). These have been very informative studies, but it is not totally clear how growth at the cellular level relates to growth at visible level. Moreover, fossil surfaces are often abraded, obfuscating surface details. So, I can envision using synchrotron microscopy similar to Cooper et al. (2011) and Huldtgren et al. (2011), to examine bone growth in fossil hominids, at and beneath the surface. This can help us understand how facial growth was modified over the course of human evolution, from the snouty visage of Australopithecus afarensis to the tiny, starry-eyed faces we have today. People could also examine how activities like chewing, running or even talking affect (and effect) bone growth. There is much work to be done.

ResearchBlogging.orgNeat as these projects would be, it’s pretty humbling to consider that we have the technology to analyze microscopic fossils hundreds of millions of years old, and shed light on the developmental processes in our earliest ancestors.

Read those things I’d mentioned

BROMAGE, T. (1989). Ontogeny of the early hominid face Journal of Human Evolution, 18 (8), 751-773 DOI: 10.1016/0047-2484(89)90088-2

Cooper, D., Erickson, B., Peele, A., Hannah, K., Thomas, C., & Clement, J. (2011). Visualization of 3D osteon morphology by synchrotron radiation micro-CT Journal of Anatomy, 219 (4), 481-489 DOI: 10.1111/j.1469-7580.2011.01398.x

Huldtgren, T., Cunningham, J., Yin, C., Stampanoni, M., Marone, F., Donoghue, P., & Bengtson, S. (2011). Fossilized Nuclei and Germination Structures Identify Ediacaran “Animal Embryos” as Encysting Protists Science, 334 (6063), 1696-1699 DOI: 10.1126/science.1209537

Martinez-Maza, C., Rosas, A., & Nieto-Diaz, M. (2010). Brief communication: Identification of bone formation and resorption surfaces by reflected light microscopy American Journal of Physical Anthropology, 143 (2), 313-320 DOI: 10.1002/ajpa.21352

McCollum, M. (2008). Nasomaxillary remodeling and facial form in robust Australopithecus: a reassessment Journal of Human Evolution, 54 (1), 2-14 DOI: 10.1016/j.jhevol.2007.05.013

O’Higgins, P., Chadfield, P., & Jones, N. (2001). Facial growth and the ontogeny of morphological variation within and between the primates Cebus apella and Cercocebus torquatus Journal of Zoology, 254 (3), 337-357 DOI: 10.1017/S095283690100084X

Ungar, P., & Sponheimer, M. (2011). The Diets of Early Hominins Science, 334 (6053), 190-193 DOI: 10.1126/science.1207701

eFfing Fossil Friday (another late edition)

ResearchBlogging.orgI’m sitting at a cafe in Tbilisi, departing at 4:00 am tomorrow for America. Readers will notice that I’ve been MIA while working with the second annual Dmanisi Paleoanthropology Field School. I hate to say it but I’m glad I was too busy to blog all the goings-on (though sorry if it disappointed anyone). All in all it was another great year, and we found some great fossils (about which I don’t think I have permission to say anything at all). Here’s this year’s class with their certification of badassery at the site on the last day:
But Dmanisi won’t be the subject of this belated eFfing Fossil Friday. I’d like instead to turn to the question of just what fossils are good for. I’m told that in China, fossil teeth were once interpreted as dragons’ teeth, and so pulverized and sold as medicine. But what good are they to non-medical science? My recent research interests have come to focus on the relationship between evolution and development. Evolutionary developmental biology (“evo-devo”) research has been dominated by studies of genes, gene expression, and model organisms like fruit flies and mice. In such an environment, the question of the relevance of fossils is especially poignant.
But this morning, while planning a human evo-devo course I hope to teach next summer, I stumbled upon a review paper by Rudolf Raff, titled “Written in Stone: Fossils, genes and evo-devo” (2007). I think the abstract sums things up pretty well:

Fossils give evo-devo a past. They inform phylogenetic trees to show the direction of evolution of developmental features, and they can reveal ancient body plans. Fossils also provide the primary data that are used to date past events, including divergence times needed to estimate molecular clocks, which provide rates of developmental evolution. Fossils can set boundaries for hypotheses that are generated from living developmental systems, and for predictions of ancestral development and morphologies. Finally, although fossils rarely yield data on developmental processes directly, informative examples occur of extraordinary preservation of soft body parts, embryos and genomic information.

It seems often that fossils are falling by the wayside. There’s a sentiment that there’s not much information to be gotten from fossils – they’re too incomplete, too few, too inconvenient, at least as compared with extremely high-output data such as that coming from genomics. But Raff is right – we need fossils. Beyond the excellent points Raff raises in the review, I’m working on getting the most out of these seemingly data-poor fossil samples. Because modern computers are so powerful nowadays, I’m using their sheer processing power to test hypotheses about growth and development in fossil samples. These battered bunches of bones are too tiny to be analyzed by traditional methods. But one thing I think is important to take away from this computer-crazy Information Age, is that we now have machines that can handle almost any kind of question one can think to ask, and it’s really inspiring. The sequencing and analyses of ancient Neandertal and Denisova genomes (Green et al. 2010, Reich et al. 2010) are excellent examples of the amazing research that can be done with computers and creativity (and probably also a horde of hard-working math majors).
So this eFFF (or Sunday) is not dedicated to any specific fossil or set of fossils, but rather to all fossils, even the crappy fragments. Gaumarjos, fossils: your secrets are not safe from us.
Reference
Green, R., Krause, J., Briggs, A., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M., Hansen, N., Durand, E., Malaspinas, A., Jensen, J., Marques-Bonet, T., Alkan, C., Prufer, K., Meyer, M., Burbano, H., Good, J., Schultz, R., Aximu-Petri, A., Butthof, A., Hober, B., Hoffner, B., Siegemund, M., Weihmann, A., Nusbaum, C., Lander, E., Russ, C., Novod, N., Affourtit, J., Egholm, M., Verna, C., Rudan, P., Brajkovic, D., Kucan, Z., Gusic, I., Doronichev, V., Golovanova, L., Lalueza-Fox, C., de la Rasilla, M., Fortea, J., Rosas, A., Schmitz, R., Johnson, P., Eichler, E., Falush, D., Birney, E., Mullikin, J., Slatkin, M., Nielsen, R., Kelso, J., Lachmann, M., Reich, D., & Paabo, S. (2010). A Draft Sequence of the Neandertal Genome Science, 328 (5979), 710-722 DOI: 10.1126/science.1188021


Raff, R. (2007). Written in stone: fossils, genes and evo–devo Nature Reviews Genetics, 8 (12), 911-920 DOI: 10.1038/nrg2225
Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, Viola B, Briggs AW, Stenzel U, Johnson PL, Maricic T, Good JM, Marques-Bonet T, Alkan C, Fu Q, Mallick S, Li H, Meyer M, Eichler EE, Stoneking M, Richards M, Talamo S, Shunkov MV, Derevianko AP, Hublin JJ, Kelso J, Slatkin M, & Pääbo S (2010). Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468 (7327), 1053-60 PMID: 21179161

eFFING FOSSIL FRIDAYS!

I’m going to do my best to keep up with the blog during by Big Summer Adventure, and one thing I’d like to do is “F-ing Fossil Friday!” in which I focus on fossils for a bit. We’ll see if I can make this pan out.
Today I got out the rest of the Australopithecus robustus mandibles at the Transvaal Museum (above), save for I think maybe 1. As you can see from the picture, taphonomy (what happens to an animal’s remains between death and our digging them up) creates a serious challenge for the study of variation in this species. I’m focusing on ontogenetic variation – differences associated with growth and development. In spite of its fragmentary nature, so far as I know this is the best ontogenetic series of any fossil hominid (I should probably look more into A. afarensis here, too). In the bottom left you’ll see SK 438, the youngest in the sample, whose baby teeth haven’t quite come in all the way. Poor little guy! At the top right corner is SK 12, probably the oldest individual and also a big bugger.
One thing that I’ve noticed so far, only a preliminary observation that I need to actually run some numbers on, is that as individuals get older, the length of their tooth row (molars and premolars) gets shorter. This is because of the tendency for teeth to move forward during growth – “mesial drift” – and for adjacent teeth to literally wear into one another, their ends becoming flatter and flatter. While I should have realized this, it was surprising at first to find some dimensions of the lower jaw actually decreasing during growth. Now, I still have to run some tests to see if this is a biologically significant phenomenon. But it’s always nice to learn something new, even after just 2 days back with my best extinct buddies.
Stay tuned to future eFfing fossil Fridays!

Tooth formation rates – what do species comparisons really mean?

A paper just came out in PNAS, by Tanya Smith and others, in which they estimate tooth-crown formation times in a large sample of modern humans (n=>300 individuals), a modest sample of Neandertals (n=8), and a poor sample of ‘fossil Homo sapiens‘ (n=3). Teeth form by the periodic deposition of enamel (the hard, white part visible in teeth in the mouth) and dentin (forms the tooth root and internal part of the crown). These periodicities are fairly regular (though variable), thus allowing researchers to estimate how long it took for teeth to develop. As previous studies have shown, Smith and colleagues find that Neandertals formed most of their teeth faster than modern humans.

Growth and development are part of an organism’s life history strategy, and so the observation that Neandertals (and other fossil human species/lineages) form their teeth faster than modern people suggests that perhaps they ‘lived faster’ and died younger than us. It has also been used as evidence that Neandertals are a different species from modern humans.
But I don’t know how well the latter taxonomic argument works. Along these lines, I wish the authors had discussed the meaning of the estimated crown formation times for their fossil ‘modern’ humans (Qafzeh 10 & 15 from Israel ~100 thousand years ago, and Irhoud 3 from Morocco ~160 thousand years ago). The boxplot summaries of crown extension rates (above) show that Neandertals are, indeed, generally fast relative to the large modern sample. However the fossil-modern humans (asterisks, which I’ve circled in red) show a bizarre, not easily interpretable pattern. For the central upper incisors (I1), fossil-moderns are either within the Neandertal range or an outlier at the high end of the human sample. For the lower second incisor (I2) the two fossil-moderns are either waaaaaay above the human range, or a little below it -either way it’s outside the human range. In addition, the sole fossil-modern lower first molar has a lower rate than the modern sample – suggesting an even slower development time. Only the fossil-modern canine formation time fits comfortably within the range of modern humans. Given this wide range of variation in tooth crown formation times in the very small sample of fossil-modern humans, I don’t think we can use this information to make taxonomic arguments.
I think these dental histology studies are very interesting, but I don’t know how much stock we can put in any taxonomic interpretations of them. That Neandertal teeth form faster than modern humans’ is old news, and the discussion focused solely on the neandertal-modern human comparison. It’s too bad that the really interesting part of the paper – the variation in formation time displayed by the fossil-moderns – got no discussion.
The paper
Smith TM et al. 2010. Dental evidence for ontogenetic differences between modern humans and Neandertals. Proceedings of the National Academy of Sciences, in press.

Holy Effing Crap II: Australopithecus from Malapa

Lee Berger and colleagues report in Science today on 2 incredibly well preserved skeletons – including perhaps the best-preserved hominid skull in South Africa, in some ways as good as or better than Sts 5 (Australopithecus africanus). The specimens come from a site called Malapa in South Africa, dating to around 1.9 – 1.7 million years ago. The authors argue that it is so unique in its features that it warrants a new species – Australopithecus sediba – linking the earlier A. africanus with later Homo habilis. Is it really a new species? In my personal opinion, there’s not much distinguishing it from A. africanus.
The amazingly preserved skull is of a subadult, maybe 11 years old. The highly angled root of the zygomatic, positioned just above the M1 alveolus is classic A. africanus. It really reminds me of Sts 17, or possibly Sts 52 in the lower face. The prognathism is modest and lacks the anterior nasal pillars which tend to be fairly pronounced in A. africanus; in this regard it is quite comparable to specimens like TM 1512. Like Sts 52, it has multiple infraorbital foramina. The cranial capacity is estimated at 420 cubic centimeters (cc), which is pretty small, but within the estimated A. africanus range of variation. The authors say that the relatively low position of the temporal lines, spaced far apart from the sagittal suture, and the fact that the zygomatic arches do not flare to the sides, are features more like Homo than like A. africanus. But the specimen is only 11 years old; while the brain is finished growing, the face and chewing muscles probably aren’t. So if this were a fully adult specimen, I’m sure both of these features would come to look more like A. africanus.
The upper and lower first and second molars increase in size posteriorly, and have a distinct protostylid (enamel shelf along the side of one of the cusps) which has a very high frequency in A. africanus. The upper molars, while not totally complete, preserve something that I’ve noticed and I’m sure is in the literature, that the M1 is fairly small and squared compared to the generally larger and not-quite-as-square M2. In a few words, then, the skull seems to fit comfortably in the range of A. africanus variation.
Perhaps the least A. africanus-like aspect of the skull is the supraorbital torus. The supraorbital, or brow, is generally a modestly expressed in most africanus specimens that preserve it. The Malapa specimen is much more similar, to my eye, to later Homo in its projection and arching over the eyes. What could this mean? Moss and Young’s (1960) functional matrix model of looking at the cranium views the supraorbital as a function of the relative position of the brain to the orbits. Perhaps the spatial relationship between the vault and the face which becomes characteristic of later homo becomes established in earlier in the lineage. Other than the supraorbital, this specimen seems purely A. africanus to me. In all, the contour of the vault may not be too different from younger Dmanisi specimens like D2700 or 2280; that Malapa lacks the occiput gives an artificially short front-to-back look to the specimen. The face, however, is totally A. africanus.
Perhaps one of the most striking images is the lateral view. This photo looks strikingly similar to a subadult chimpanzee, albeit with a taller face and less prognathic snout. Maybe I’ve just seen a subadult ape before that this thing reminds me of.
So, this is an immensely exciting set of fossils. Is there a new species of Australopithecus? I wouldn’t bet my life on it. If you go with the widely held idea, that A. africanus or something like it was ancestral to later A. robustus on the one hand, and our Homo ancestors on the other, this thing would fall on the Homo side of that split. So in this case, since we’re not seeing anagenetic evolution – evolutionary change within a lineage – but rather branching, how do you name this thing? It might be slightly more derived toward a Homo than either its “pure” africanus ancestors and A. robustus evolutionary cousins, does this make it Homo? The issue is that adaptively its morphology doesn’t seem to be different from A. africanus, which would argue against the generic distinction. But if its later ancestors become H. habilis and nothing else, then I suppose this would make it a “chronospecies” of H. habilis. So maybe we should call this thing H. habilis? I think most people would argue with this simply on the brain size issue. And the brain is way smaller than any proclaimed Homo specimen.
Taxonomically, this will be a tough call.
References
Berger L, de Ruiter DJ, Churchill SE, Schmid P, Carlson KJ, Dirks PHGM, and Kibii JM. 2010. Australopithecus sediba: A New Species of Homo-like Australopith from South Africa. Science 328: 195 – 204
Moss ML and Young R. 1960. A functional approach to craniology. American Journal of Physical Anthropology 18: 281 – 292