One of my goals in teaching is to introduce students to how we come to know things in biological anthropology, and lab activities give students hands-on experience in using scientific approaches to address research questions. Biological anthropology (really, all biology) is about understanding variation, and I’ve created some labs for students to scrutinize biological variation within the classroom.
In my Introduction class, the first aspect of human uniqueness we will focus on is the brain. To complement readings and lectures, we’ll also investigate variation in brain size among students in class. Of course, measuring their actual brain sizes is impossible without either murdering them (unethical and messy) or subjecting them to CT or MRI scanning (costly and time-consuming). Instead, it’s fast and easy to measure head circumference, so we’ll estimate just how brainy they are in a way that will also introduce them to data collection, measurement error, and the regression analysis.
The lab activity is based on a paper by Bartholomeusz and colleagues (2002), who used CT scanning to measure the external head circumferences and brain volumes of males ranging from 1-40 years. Focusing on the adults of this sample, there are several possible regression equations that students could use to estimate their brain size from their head circumference:

The relationship between head circumference and brain volume in adult humans. Note each regression line is based on different age groups. Data from Bartholomeusz et al. (2002).
Bartholomeusz et al. divided their sample into age groups, and students will learn that the relationship between the two variables differs subtly depending on the age group. Students will therefore have to decide (and justify) which equation they will use – should they pick the one based on their own age group, or the one with the lowest prediction error?
Once students have estimated their brain sizes, I’ll enter the data into R and we’ll look at how (estimated) brain size varies within the classroom, looking also at possible covariates including sex and region of birth. After discussing our data in class, students have to write up a brief report describing our research question and proposing additional hypotheses about brain size variation.
So that’s this week’s lab in Introduction to Biological Anthropology. There will be four more this semester, in three of which students will collect data on themselves, as well as four other labs for my Human Evolution course. In case you’re interested in using this activity for your class, I’m including the lab handout here. I’ll also try to post lab assignments to the blog (as I’ve done here) as the semester progresses.
Activity handout: Lab 1 Instructions and report
Bartholomeusz, H., Courchesne, E., & Karns, C. (2002). Relationship Between Head Circumference and Brain Volume in Healthy Normal Toddlers, Children, and Adults Neuropediatrics, 33 (5), 239-241 DOI: 10.1055/s-2002-36735
Pingback: Bioanthro lab activity: Sexual dimorphism | Lawn Chair Anthropology
Interesting activities! I am interested in doing a similar activity for my classes. What were the regression equations you used? Thanks!
-Amanda
The equations are listed on the right side of the graph in the blog post. These aren’t in the original paper; it’s been a while but what I think I did was use Plot Digitizer get the data points from the original paper’s figures, and then fit linear regressions to those points, to make the graph and equations in the blog post.